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Amplitude Death in an Array of 
Limit-Cycle Oscillators 
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We analyze a large system of limit-cycle oscillators with mean-field coupling and 
randomly distributed natural frequencies. We prove that when the coupling is 
sufficiently strong and the distribution of frequencies has sufficiently large 
variance, the system undergoes "amplitude death"--the oscillators pull each 
other off their limit cycles and into the origin, which in this case is a stable equi- 
librium point for the coupled system. We determine the region in coupling- 
variance space for which amplitude death is stable, and present the first proof 
that the infinite system provides an accurate picture of amplitude death in the 
large but finite system. 

KEY WORDS: Nonlinear oscillator; bifurcation; phase transition; mean-field 
model; self-synchronization; collective phenomena. 

1. I N T R O D U C T I O N  

Arrays of coupled nonlinear oscillators arise in many branches of science 
and technology. Recent applications in physics include phase-locked arrays 
of lasers, (1) Josephson junctions, (2) and relativistic magnetrons. (3 ~ Networks 
ot' nonlinear oscillators have also been used to model the generation of 
biological rhythms in the heart, (4-8) n e r v o u s  sys tem,  (4-7'9-11) intestine, (5'12) 
and pancreas. (13) 

Oscillator arrays also pose extremely interesting theoretical problems 
that lie at the intersection of statistical mechanics and nonlinear dynamics. 
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For example, consider an array of coupled limit-cycle oscillators with ran- 
domly distributed natural frequencies. (~4-17~ (This provides a reasonable 
model for the network of pacemaker cells in the heart. (4'5'81) As the 
coupling is increased beyond a certain threshold, the oscillators suddenly 
begin to entrain one another to a common frequency. The sudden onset of 
self-synchronization is strikingly similar to a second-order phase transition 
for an equilibrium system. (4'14) In this example, the order parameter 
measures the temporal coherence among the oscillators; it vanishes if the 
coupling is too weak, and then grows sharply (but continuously) once the 
coupling exceeds threshold. 

Many of the theoretical studies of oscillator arrays have been limited 
to the case of phase-only oscillators. (4'I~ t2,14-17) That is, the amplitude 
degrees of freedom of the oscillators have been neglected. This is a 
reasonable approximation if the system is composed of limit-cycle 
oscillators that are weakly coupled, relative to the attractiveness of their 
limit cycles. ~ 

However, when amplitude variations are not negligible, a number of 
intriguing new phenomena can occur. (18 29) One of these is "amplitude 
death," discovered by Yamaguchi and Shimizu (19) and studied further by 
Ermentrout and his collaborators. (22-25) Amplitude death is a coupling- 
induced stabilization of the origin: the oscillators pull each other off their 
limit cycles, and collapse into a state of zero amplitude. Yamaguchi and 
Shimizu (19) found that two ingredients are needed for amplitude death to 
be stable: (i) sufficiently strong coupling between the oscillators and (ii) a 
sufficiently wide distribution of natural frequencies. 

The phenomenon of amplitude death may be relevant to certain 
pathologies of biological oscillator networks. It corresponds to the cessa- 
tion of rhythmicity in a system which is spontaneously rhythmic for other 
choices of parameters. Other possible mechanisms for arrhythmias are 
discussed in refs. 5, 6, and 30. 

Since the work of Yamaguchi and Shimizu, (19) amplitude death has 
been studied by a number of authors. (2~27/The case of n = 2 oscillators has 
been analyzed rigorously. (24/ In contrast, the mean-field theory for the 
large-n problem has been treated in a more heuristic way, through the use 
of averaging methods, ~ self-consistency arguments, (19'26~ and integral 
equations. (25) A more detailed review of previous work is given in Section 6. 

In this paper we present a rigorous analysis of amplitude death in the 
mean-field model. Our theorems clarify the mathematical basis for certain 
results obtained more formally by previous authors. (19'25'26) For example, 
we give the first proof that the infinite-n system provides an accurate 
picture of the finite-n system, for sufficiently large n. This work is part of 
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a larger effort in progress, in which other aspects of the dynamics of 
oscillator arrays will be analyzed. 

Model  

Following refs. 18, 19, 25, and 26, we study the system of differential 
equations 

dzj (1 - ] z j ] 2 +  ico/) zj+K(<z> - z / ) ,  
dt 

j = l  ..... ~ ( 1 )  

where z/(t) is a complex number which represents the state of the j t h  
oscillator at time t, K~>0 is the coupling strength, <z) is the mean of the 
z/given by 

<z> = -  z, 
r /  . 

z = l  

and the co/+ R are the natural frequencies of the oscillators. The frequencies 
are assumed to be randomly distributed with a density g(co); by going into 
a rotating frame if necessary, we can assume without loss of generality that 
g has zero mean. 

Equation (1) represents a population of limit cycle oscillators with 
mean-field coupling; each oscillator is coupled to all the others through the 
average quantity <z). In the absence of coupling, each oscillator has an 
asymptotically stable limit cycle of radius Pzj] = 1 and an unstable equi- 
librium point at zg = 0. The dynamics of the coupled system is more com- 
plex, although one trivial solution is clear from inspection: there is always 
a static solution with z /=  0 for all j. This solution is the state of "amplitude 
death" discussed above. Depending on the coupling strength K and the 
sample co l,..., co,, the origin may or may not be stable. 

Our goal is determine the precise conditions under which amplitude 
death is stable. In Section 2, we derive the characteristic equation for (1) at 
the origin; in Section 3, we discuss the limit of this equation as n -~ oo. In 
the limit, the conditions for stability depend solely on the coupling K and the 
distribution g(co), as shown in Section 4. In Section 5, we consider certain 
one-parameter families ofg(co) (depending on the standard deviation a of g), 
and explicitly determine the region in (K, a) space for which amplitude death 
is stable. The stability boundary is given by a transcendental equation in K 
and a. We show that these exact results for the stability boundary are well 
approximated by a much simpler asymptotic formula. In Section 6 we discuss 
the relation of our work to previous studies. 
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2. CHARACTERIST IC  EQUATION 

The linearization of (1) at zj = 0 is the system 

dz. 
- ~ =  (1 - - K +  icoj) zj + K (  z ), 
dt 

j = 1,..., n (2) 

For stability we need all eigenvalues 2: of (2) to satisfy Re 2j ~< 0. Let A be 
the matrix of (2). Then 

Re(Tr A ) = n ( l  - K ) + K = n -  ( n -  1) K 

Hence a necessary condition for stability is 

?/ 

Re(Tr A) ~< 0 <:~ K>~ 
n - 1  

In particular, K > 1 is necessary for stability. 
Now we derive the characteristic equation for A. To simplify the 

notation, we set 

O=A+(K-1)I  

Let # denote an eigenvalue of B. Then the eigenvalues of B and A are 
related by 

# = ) ~ + K -  1 (3) 

The~ characteristic equation for B is d e t ( # I - B ) = 0 ,  where the matrix 
elements of B are given by 

~K/n + i(~Op, p = q 
(4) 

{ K/n, p r q 

The following lemma is useful for calculating the characteristic equation 
of B. 

Lemma: 

det 

1 + x I Xl 

x2 1 + •2 

Xn Xn 

X2 

�9 " X n 

xl) X2 

l ! x n  

= l + x ~ + x 2 +  ... +x~ 



Limit-Cycle Oscillators 249 

ProoL 

l 
l -~-X 1 X 1 

x2 1 -{- x 2 
det ' " 

Xn Xn (,o 
Y 2 1 + x2 

= d e t  " " 

Xn Xn (, 1 
X 2 1 + x2 

+ x ~  d e t  ' " 

Xn Xn 

"'" XI ~ t X 2 X 2 

x n 1 + x ~ J  

�9 .. 0 t X2 X2 

... 1 t X2 X2 

By induction, the first determinant on the right-hand side is 
1 + x 2  + ' . -  + x , .  The contribution of the second determinant is x l ,  as can 
be seen from row reduction. This completes the proof. | 

We apply this lemma to find the characteristic equation of B. 

Proposition: 

d e t ( p I - B ) = ( # - i c o l ) . . . ( # - i c o n ) [ 1 - K k  (#- ico j )11  
j=l  

(5) 

Proof. The elements of B are given by (4). By factoring out a term 
# - icoj from row j,  for j = 1,..., n, we obtain 

d e t ( # I - B )  = ( # -  i c o l ) . . - ( # -  ico.) 

I 
1 + x l  

x2 

x det 

Xn Xn 

X 1 . . . . . .  X 1 \ 

) 1 - ~  X 2 " ' "  X 2 X 2 

�9 . . 

� 9  �9 x n 1 q -  X , , /  
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where 

X~ = - K ( #  _ i e ) j )  - ' ,  j = 1,..,, n 
n 

Applying the 1emma now yields the desired result. | 

3. C O M P A R I S O N  OF FINITE A N D  INFINITE SYSTEMS 

In general, it is too difficult to find the solutions # of the characteristic 
equation (5), because they depend on the particular sample COl ..... con. For- 
tunately, the problem becomes tractable in the limit n --* ~ .  In this section, 
we present a result which ensures that the infinite-n problem provides an 
accurate picture of the finite-n problem, for n sufficiently large. 

The stability type of the origin depends on whether the characteristic 
equation (5) has roots # with Re # ~> K -  1 > 0. Hence we restrict attention 
to # in the right half-plane Re # > 0. The roots in this domain are given by 
the solution Offn(#)=  K -1, where 

fn(#) =-1 ~ (#_i~oj)_  1 (6) 
H j = I  

The function fn(# ) is analytic in this domain. 
Let n ~ oo in (6). Then fn(#) converges, in a sense to be specified 

below, to the analytic function 

f 
o o  

f ( # ) =  (# -- ifo) -1 g ( c o ) d c o  (7) 
- - o o  

Our main theorem states that the location of the roots o f f ( p ) =  K 1 
governs the behavior of the finite-n system, with probability --* 1 as n ~ oo. 
More precisely: 

Theorem 1.  (A) Suppose all roots of f ( # ) = K  ] satisfy 
R e # < K - 1 .  Then amplitude death is stable with p robab i l i ty~  1 as 
n ---+ oO. 

(B) Suppose f ( # ) = K  1 has a root # with R e # > K - 1 .  Then 
amplitude death is unstable with probability ~ 1 as n ~ oo. 

P r o o f .  The theorem follows from Chebyshev's inequality and 
Rouchb's theorem. Using Chebyshev's inequality, we show that f , ( # )  is 
close to f ( # )  along a certain line. Then we invoke Rouch6's theorem to 
conclude that the functions f n ( # ) - K  - 1  and f ( # ) - K  -1 have the same 
number of zeros in a certain region, with probability ~ 1 as n --* oo. 
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First we claim that  f ( # ) =  K ~ can have only finitely m a n y  solutions. 
If there were an infinite sequence of roots,  then this sequence either 
diverges, or it has a subsequence converging to a limit point.  Both cases 
lead to contradict ions:  If a subsequence converges to a limit point,  then f 
would have to be a constant  function, by analytic cont inuat ion;  and a 
sequence of roots  cannot  possibly go off to infinity, s i n c e f ( p )  --, 0 # K ~ as 
# ---~ o�9 

Hence,  for all but  finitely m a n y  a > 0 the line Re p = a has no roots  of  
f(/~) = K - i  on it. On  such a line, 

e =  min  ] f ( # ) - K  1 ] > 0  
R e / z = a  

The next step is to bound  the difference between f~(#)  andf ( /~ )  on this line. 
Fix #. Let  

Xj = (# -- icoj) - 1 

for j =  l ..... n. Then  X1,..., Xn are independent  and identically distributed, 
with 

and 

EXj = f ( # )  

Set 

! ~, xj=f.(~) 
Hj=I 

f 
oo 

a~ = Var X j =  I ( # - i a ) ) 1 - f ( # ) 1 2 g ( o ) ) d o o  
- - o o  

Then Chebyshev ' s  inequali ty implies 

Prob( l f , , (# )  - f ( # ) [  < ~) > 1 - - -  
2 O'p 

f/,~2 

Since a~ is uniformly bounded  on the domain  Re #/> a, we conclude that  

lim Prob(Ifn(l*)  - f ( # ) [  < e Vp s.t. Re # = a) = 1 
n ~ o o  

Hence, with probabi l i ty  --, 1, 

[fn(l~)-f(#)l<lf~(#)-K 11 V#s.t. R e # = a  
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Now the functions fn(#) and f(/~) are analytic at infinity as well. Hence 
we may apply Rouchb's theorem to conclude that the equations 
fn(/~) -- K -  1 and f(~t) = K -  1 have the same number of roots (counting mul- 
tiplicities) in the region Re # > a, with probability ~ 1 as n ~ oe. 

To prove (A), choose the line Re # = a to the left of Re # = K -  1, but 
to the right of any roots o f f ( g ) =  K -1. 

To prove (B), choose the line Re/~ -- a to the right of Re/~ = K -  1, but 
to the left of some root o f f ( g )  = K-1  with Re # > K -  1. | 

Location of the Eigenvalues 

As a byproduct  of the argument above, we can show that all but a 
bounded number  of the eigenvalues 2 will lie close to the vertical line 
Re 2 -- 1 - K. For  any region Re # > a > 0, the equation fn(/a) = K 1 will 
have (with probability ~ 1 as n ~ oe) a bounded number  of solutions, and 
the bound is independent of n. Moreover, by considering the real and 
imaginary parts of the equation fn(/~)= K 1, one can see that if # is an 
eigenvalue of B, then 

Re(#) ~> 0 and COmi. ~< Im(/~) ~< COm. ~ 

where (Dmi n and (Dma x are the least and greatest co's in the sample co 1 ..... co n. 
Hence all but a bounded number  of eigenvalues # will be very close to the 
support  of g(co) on the imaginary axis. The result for ~ follows from (3). 

We now illustrate these results with a numerical example. Figure 1 
plots the eigenvalues '~1,-.., An for the system (2) for the case of n = 25 
oscillators with coupling strength K =  2 and random frequencies c%,..., con 
sampled from a uniform distribution on the interval [ - 7 ,  7]. Figure la  
shows that when 7 = 2, one of the eigenvalues has positive real part. Hence 
amplitude death would be unstable for this choice of parameters. Figure lb 
shows that when the width is increased to 7 = 2.4, all the eigenvalues have 
negative real parts and amplitude death becomes stable. In both figures, all 
of the other eigenvalues lie close to the vertical line Re 2 = 1 - K ( = - 1 ) 
and satisfy Jim 21 ~< 7, as expected from the results above. 

In f in i te -Dimensional  Analog 

The infinite-dimensional analog of the matrix B helps to explain the 
location of the eigenvalues. In this case, the limiting operator  has a 
continuous spectrum given by the support  of g(co) on the imaginary axis, as 
we shall show now. 
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Let h be any function in L 1 relative to the measure g ( o ) d o ,  and 
consider the linear operator B on L 1 defined by 

(Bh )(x) = ixh(x) + K f - 2  h(o) g(o) do2 

Then 

( . z -  8) h(x) = ( .  - ix) h(x) -  Kf~_  h(o) g(o) do 

Therefore h(x) is in the kernel of # I -  B if and only if 

f 
c O  

h ( x )  = K ( u  - ix)  1 h ( o )  g(co) d o  
:X3 

(8a) 

Im  i~ 

3 

2 

1 

0 

-1 

-2 

-3 
-1.5 

lee 

�9 

I~ ~ 

-1.0 -0.5 0.0 

Re 

(a) 

0.5 

Im ;~ 

3 

2 

1 

0 

-1 

-2 

-3 
-1.5 

ee| �9 

I 

-1.0 -0.5 0.0 

Re X 

(b) 

0.5 

Fig. 1. Eigenvalues of the system (2), for n = 25 oscillators, coupling strength K = 2, and ran- 
dom frequencies sampled from a uniform distribution on [ - 7 ,  7]. (a) 7 = 2.0; note that one 
of the eigenvalues has positive real part. (b) 7 = 2.4; all eigenvalues have negative real part, 
so amplitude death is stable. In both (a) and (b), all but  one of the eigenvalues lie close to 
the vertical line Re 2 = 1 -  K. This line contains the continuous spectrum of the limiting 
operator obtained in the infinite-n limit. 
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and 

f 
o o  

K - ' =  (# - ico)  -~ g(og) dco (Sb) 
- - o o  

From (7) and (8b) we conclude that f ( # ) = K  -~ is the equation for the 
discrete spectrum of B. Note that (8b) is essentially a self-consistency 
equation, a familiar concept in mean-field models. (14'19'26'28'29) 

But # I -  B may fail to be surjective, even if its kernel is {0}. Solving 

( # I -  B) h(x) = q(x) 

gives 

h(x) = ( # -  ix) -1 q(x) + C(# - ix) -I  

where C ~s some constant. This is possible for any choice of q(x) exactly 
when # r ico, for co in the support of g(co). Hence the continuous spectrum 
of B is {/co: g(co) r  

The upshot is that for n -+ az, the majority of the eigenvalues are close 
to the continuous spectrum of the limiting operator. 

4. CRIT ICAL C O N D I T I O N  FOR STABIL ITY 

In this section, we refine conditions (A) and (B) in Theorem 1. 

Theorem 2. 
Assume that the density g(co) is an even function which is nonincreas- 

ing on [0, oo). Then: 

(A) Amplitude death is stable with probability--+ 1 as n--, o o ~  
f ( K -  1 ) < K  -~. 

(B) Amplitude death is unstable with probability-+ 1 as n ~ o v  r 
f ( K -  1) > K -1. 

Remarks. Theorem 2 allows us to determine whether amplitude 
death is stable by calculating one equation. Moreover, we now see that the 
critical condition for stability in the large-n limit is 

f ( K -  1 ) = K  -1 (9) 

Conditions equivalent to (9) have also been derived by Shiino and 
Frankowicz (26) and Ermentrout. (2s) 
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Proof. We claim that  it suffices to prove two facts: 

(i) The e q u a t i o n f ( / ~ ) = K  - I  has only real solutions. 

(ii) f ( g )  is strictly decreasing for # > 0. 

To  see that  these two facts imply the desired result, suppose first that  
f ( K -  1) < K -  i. Then  either there is no solution to f ( # )  = K 1 (Fig. 2a), in 
which case the discrete spectrum is empty, or there is a unique solution and 
it satisfies g < K - 1  (Fig. 2b). In either case, Theorem I(A) implies that  
ampli tude death is stable with probabil i ty  --* 1 as n -+ oo. Now suppose that  
f ( K - 1 ) > K  -~. Then, since f ( g ) - + 0  as g--+ov, there exists a positive 
solution of f ( g ) = K  -1, and it satisfies g > K - 1  (Fig. 2c). Hence,  by 
Theorem I(B), ampli tude death is unstable with probabil i ty  ~ 1 as n-~  or. 
Thus, (i) and (ii) imply the desired result, as claimed. 

To  prove (i), write g = c~ + ifi. Then (7) implies 

f ~  co-/~ Im f ( g )  = - ~  c~ 2 + ( f l -  oo)2 g(co) de) 

Since f ( f i )=f(g) ,  we can assume without  loss of generality that  fi~>0. 
Then 

i -- oo 0{ 2 ~ ' ~ ( - 0 )  2 g(co) dco = -oo 0~2+ co 2 g(co + fl) dm 

f o  co = ~2 + co2 [g(co + P) - g(co - ~)3 dco 

Now we break the range of integration into two parts, as follows: 

( .  g co 
Im f ( g )  = Jo ~2 + co2 [g(co + fl) - g(co - fl)] dco 

f~  co [g(co+ f l ) -  g(oo-fl)] dco 
-~ a 2  _~_ CO2 

In the first integral, O~fl-oo<...fl+co, and in the second integral, 
0 ~ c o -  fl ~<co + ft. Hence both  integrands are nonpositive.  In fact the 
second integral is strictly negative unless fl = 0. [Otherwise  we would need 
g ( c o - f l ) =  g(a~+fl) for almost  all co._.>fl, but  this is impossible, since 
g ( c o ) - , 0  as co--+ ov.] Hence,  if I m f ( g ) = 0 ,  we must  have f l = 0 .  In par- 
ticular, all solutions o f f ( y ) =  K -1 are real. 

To  prove (ii), suppose 0 < g  < v. Write v =  r# with r >  1. Then  (7) 
yields 

f ~ r# 
f(v) = f ( r # )  = _ ~ r2g 2 + co2 g(co) de) 



256 Mirollo and Strogatz 

1 

K-I 

f(o) 

f (K-l) 

(a) 

. / / -  f(~) 

K-1 

K-1 

f ( K - l )  

solution 

(b) 

1 

Ix K-1 

f (K-l)  

K-1 

(c) 

K-1 Ix 

Fig. 2. (a) When f ( 0 ) < K  -1, there is no solution to f ( # ) = K  -I.  (b) When 
f ( K -  1) < K-1 < f (0) ,  there exists a unique solution to f ( # )  = K-I ,  and it satisfies # < K -  l. 
(c-) When f ( K - t ) > K  ~, there exists a unique solution to f (#)=K -~, and it satisfies 
# > K - 1 .  
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Write o)= rp. Then do)= r dp and 

f~ Iz g(rp ) dp f ( v ) =  - ~ !~2 + p2 

This expression is the same as that fo r f (p ) ,  but with g(rp) in place ofg(p).  
Since g(rp)<~ g(p) for all p, and equality ahnost everywhere is impossible 
since g ( p ) ~ 0  as p---, 0% we conclude t h a t f ( v ) < f ( p ) .  | 

5. ASYMPTOTICS AND EXAMPLES 

Theorem 2 shows that in the infinite-n limit, amplitude death is stable 
in a region of parameter space defined by K > 1 and f ( K -  1 ) < K -  1. What 
does this stability region look like? In this section, we derive an asymptotic 
expansion for the boundary curve (9), under the assumptions that K>> 1 
and that g(co) has finite moments of all orders. We then compare the 
asymptotic expansion to exact results obtained in two cases where we can 
calculate the boundary curve (9) explicitly. A two-term asymptotic expan- 
sion is found to work remarkably well, even when K =  O(1). 

5.1. Asymptotic Behavior of Stability Boundary 

Proposition. Suppose that the density g(o)) is an even function 
with finite moments of all orders. Let ~r and m4 be defined as follows: 

~2 = co2g(o)) rico < 
- - o o  

1 e 
= -'~ j o)4g(o)) do) < oo m 4  

oo 

Then the solution of (9) satisfies 

(r ~ K 1/2 + (m4/2 - 1 ) K-i /2  + 0(K-3/2) (10) 

as K--, oo. 

ProoL We develop a formal power series solution of (9) by expand- 
ing f ( K - 1 ) i n  even powers of o) / (K-1) ,  as follows: 

f oo ( K -  1) g(o)) do) 
f ( K - 1 ) =  _o ~ ( K _ 1 ) 2 + o ) 2  

- K - 1  g(o)) ~ ( - 1 ) / \ K - I ]  do) 
- ~  j ~ O  

822/'60/'1-2-17 
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Then (9) can be rearranged to yield 

(K-l)2 0.2 04m4 ( 06 ) 
K ( K - l )  ~ + 0  ( - - ~  1) 4 

Solving this equation for o. gives the desired result (10). | 

5.2. Corner of the Stability Region 

We now derive an expression for the "corner" of the stability region. 
That  is, we find the limiting value of o- as K ~ 1 along the boundary curve 
(9). This result complements the asymptotic formula (10), which holds for 
large K. 

Let G be a scaled version of g with standard deviation 1. That is, 

g(fn) = (l/o-) G(co/o.) 

We claim that 

o- ~ rcG(0) as K ~ I  + (11) 

along the boundary curve defined by f ( K - 1 ) =  K -1. To see this, let 
# = K -  1 and consider the limit o f f ( p )  as # ~ 0 +. Because G is even, we 
have 

f ( P )  o- ~p2+co2  

The point is that as p ~ 0  +, the kernel p/(pZ'Jr CO2) approaches a "delta 
function" with respect to co: its integral over the real line is re, for all p > 0, 
and it becomes increasingly sharply peaked near co = 0 as p ~ 0 from 
above. S o f ( p )  ~ ~zG(O)/o- as p ~ 0 +. Hence (9) implies that 7zG(O)/o- ~ 1 as 
K--, 1 +, which yields the desired result (11 ). 

E x a m p l e  1. Uniform Dis tr ibut ion .  Consider the uniform dis- 
tribution with density given by 

f 1/(27), Icoi ~<7 
g(co) = ~0, icol > 

Then (7) can be integrated and the critical condition (9) becomes 

? cot(y/K) + 1 - - K =  0 (12) 

Here 7 = x/~ 0-, where o. is the standard deviation as above. Equation (12) 
can be solved numerically to obtain y and hence o- as a function of K. 
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Figure 3 plots the region in the (K, a) plane where amplitude death is 
stable. Remarkably, the approximate solution (10) yields values of ~ that 
are within 1% of the exact solution (12) for all K >  1. The greatest error 
occurs at the corner of the stability region: for K =  1 the exact value from 
(11) is a=Tr/ (2 , ,~)~0.907,  and the value predicted by (10) is 
~r ~ K 1 / 2 -  0.1K 1/2 = 0.900. (Here we have used the fact tha t  m4 = 9/5 for 
the uniform distribution.) 

Example  2. Tr iang le  Dis t r ibu t ion .  Our second example is the 
triangle distribution with density given by 

g(o~)=~ ?2 , la, l~< 

0, Icol/>? 

Again (7) can be integrated and the condition (9) now becomes 

1 2 1 ~,= ~ tan (K---~) - K -  11n [1 ~ 7 2  

The triangle distribution has ? = , , f 6 a  and m4=12/5. Hence the 
asymptotic approximation (10) becomes 

6 ~ K 1/2 -'}- 0.2K- 1/2 

Figure 4 shows that the asymptotic result is again very close to the 
exact result. 

10 
"-'--O-- exact . ~  

8 * asymptotic _ 6i~'f 
6 

K 4 y death 

2 

I I i i 

0 1 2 3 4 

(Y 

Fig. 3. Stability region for amplitude death, for the case of a uniform distribution g(co) with 
standard deviation ~. The region is bounded by the line K=  1 and the curve (12). The numeri- 
cal solution of (12) is well approximated by the large-K asymptotic solution (10), even when 
K = I .  
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10 

8 

6 

4 

2 
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----0-- exact s 
* asymptotic/ 

death 

I I I 

1 2 3 

G 
Fig, 4. Stability region for amplitude death, for the case of a triangle distribution g(c0) with 
standard deviation or. The region is bounded by the line K= 1 and the curve (13). The numeri- 
cal solution of (13) is closely approximated by the asymptotic solution (10). 

6. R E L A T I O N  T O  P R E V I O U S  W O R K  

As mentioned in the Introduction, a number of previous authors have 
discussed the phenomenon of amplitude death. The work of Yamaguchi 
and Shimizu, (19/ Ermentrout, (25/ and Shiino and Frankowicz (26) is par- 
ticularly relevant, because they studied Eq. (1) or equations equivalent to 
it. 

Yamaguchi and Shimizu (19~ studied a system of weakly nonlinear van 
der Pol oscillators with mean field coupling, random intrinsic frequencies, 
and external white noise. Using the method of averaging and the slaving 
principle of Haken, (31) they reduced their system to (1), with an additional 
noise term. This application of the slaving principle was argued to be valid 
only if K >  1 (in our notation); as we have shown, this is one of the 
necessary conditions for stable amplitude death (which Yamaguchi and 
Shimizu called "mechanical bifurcation"). To study self-synchronization of 
the oscillators as well as the stability of amplitude death, they derived an 
approximate evolution equation for the growth of the order parameter 
( z ) .  This evolution equation allowed them to calculate the stability 
boundary for amplitude death for various distributions g(~o), including 
some of those later discussed by Shiino and Frankowicz (26/ and Ermen- 
trout. (25) 

Shiino and Frankowicz (26) studied the dynamics of the system (1) for 
both K <  1 and K >  1 for Lorentzian and Gaussian distributions g(co). 
They found the stability region for amplitude death (which they called the 
"quenched" state) by a self-consistent mean-field argument: they sought 
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phase-locked solutions of (1) with some fixed value of (z ) .  In a rotating 
frame, the problem reduces to a static situation where the locked position 
of each oscillator depends on (z ) ,  but also determines (z ) .  A branch of 
self-consistent solutions with ( z ) ~  0 is born along the stability boundary 
of amplitude death. This method gives the boundary curve (9), but 
provides no information about stability, which Shiino and Frankowicz (26) 
determined numerically. 

Ermentrout (25) used the methods of classical applied mathematics, 
rather than statistical mechanics, to analyze (1). He showed that as n ~ o% 
the long-time behavior of ( z )  is governed by a certain integral equation. 
]'his equation has exponentially decaying solutions when two conditions 
are satisfied: one is K >  1 and the other is a condition on the Fourier trans- 
form of g, which is equivalent to our condition f ( K - 1 ) < K  1. He 
calculated the stability boundaries for a number of specific distributions, 
and gave asymptotic results when the frequencies were not random, but 
evenly spaced on some interval. One of Ermentrout's most important 
findings (25! is that amplitude death is a robust phenomenon--his numerical 
results indicate that amplitude death occurs in a wide variety of systems, 
and does not depend on the special symmetries or infinite-range coupling 
in (1). 

The novel aspect of our work is that we determine the stability of 
amplitude death by calculating eigenvalues. Our techniques are both 
elementary and rigorous, but they had not been applied to this problem 
before. The results presented here clarify a number of points that may have 
seemed puzzling in the earlier work. For example, one would expect that 
n inequalities would be needed to ensure the stability of the origin in the 
n-dimensional dynamical system (1), yet previous authors have claimed 
that only two inequalities are needed: essentially K >  1 a n d f ( K -  1)< K-1. 
Our Theorem 2 allows one to understand why two inequalities are 
enough--for large n, the finite-n system is well approximated by the 
infinite-n system, and only two conditions are needed to ensure that death 
is stable for the infinite-n system. The condition f (K-1 )<  K-~ keeps the 
discrete spectrum from causing instability and the condition K >  1 similarly 
controls the continuous spectrum. 
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